
A New Pivoting and Iterative Text Detection Algorithm

for Biomedical Images: Appendix A

Algorithm Details for our Pivoting Text Detection Algorithm

Inspired by the classical histogram analysis based text region detection

methods ([2, 1]), we describe a procedure for locating text regions in an image

through analyzing both the vertical and horizontal projection histograms of

an image:

• Input An input image I and a specified rectangular region R =

(left, right, top, bottom) inside the region of I.

• Function of the Procedure To detect all the text regions inside the

interior region R of the input image I.

• Output A collection of text regions {Ri
j} so detected where each Ri

j

is a text region detected from within the region R of the input image

I.

We can formally state the above procedure in the form of (1).

Text Region Detection Procedure : I,R→ {Ri
j}. (1)

We will now look at the details of our text detection procedure.

1. First, we convert the input image I into black and white if it is orig-

inally a color image. We then apply a 3x3 median filter to blur the

Preprint submitted to Journal of Biomedical Informatics November 10, 2009

image background in order to make our text detection procedure less

sensitive to image noise.

2. Next, we detect edges in the converted black and white image. Cur-

rently, we use the classical Sobel operator for this purpose due to its

simplicity and satisfying performance in our experiments. Other edge

detectors, such as Canny and Canny-Deriche edge detectors, can also

be used without noticeably affecting the overall performance of our al-

gorithm. We call the resultant image from this step the edge image of

the original input image I, which is denoted as Î.

3. We then compute the vertical projection for each pixel in the edge

image Î to derive Î’s horizontal histogram. More concretely, given

the width w and height v (both in pixels) of Î, the horizontal projec-

tion histogram of the edge image Î is denoted as Hh(i) (i = 1, · · · , w)

where Hh(i) records the number of edge pixels on the vertical line

that stays i pixels away from the left boundary of the image, i.e.

Hh(i) = |{pixel(i, y)|pixel(i, y) is an edge pixel in Î; y = 1, · · · , v}|.
Here pixel(x, y) denotes the pixel whose horizontal and vertical co-

ordinates are x and y respectively; and |X| returns the cardinality

of the set X. The overall horizontal histogram of the edge image Î
is thus represented as a w dimensional vector in the form of Hh ,
[Hh(1), · · · ,Hh(w)].

4. We then segment the derived horizontal projection histogram Hh ac-

cording to a preset segmentation threshold τh. To carry out this seg-

mentation, we first derive a binary sequence Bh according to the hori-

zontal projection histogram Hh. Here we define Bh to be a w dimen-

2

sional vector in the form of Bh , [Bh(1), · · · ,Bh(w)]. For each Bh(i),

it is derived as follows:

Bh(i) ,

1 if Hh(i) ≥ τh;

0 otherwise.
(i = 1, · · · , w) (2)

We then detect all the segments of consecutive 1’s in Bh and denote

the resultant sequence of segments as Seg1, · · · , Segn where we assume

there are n such resulting segments. Here Segi corresponds to the i-th

segment of consecutive 1’s in Bh. For each such segment Segi, we rep-

resent its left and right boundaries in the binary sequence Bh as lefti

and righti respectively. That is, Segi corresponds to the block of con-

secutive 1’s which starts at the lefti-th component in Bh and ends at

the endi-th component in Bh. It is easy to see that righti−1 < lefti as

otherwise Segi−1 should have been joined with Segi. Also, if any resul-

tant segment’s width is less than 3 pixels apart, i.e. lefti−righti−1 < 3,

we will eliminate this segment, as such a segment probably correlates

to an edge or a boundary in the input image rather than a text region

since with this narrow width, texts are unlikely to be eligible.

5. For each segment Segi obtained from the previous step, we can locate

a rectangular sub region R(i) in the edge image Î. The left, right,

top, bottom boundaries of the region correspond to the lines x = lefti,

x = righti, y = 1, and y = v in the image Î respectively. And all

the pixels falling between these boundaries constitute the region R(i),

which is denoted as R(i) , {pixel(x, y)|lefti 6 x 6 righti; 1 6 y 6 v}.
For each so located region R(i), we then derive its vertical projection

histogram, which is denoted as Hi
v where the subscript v indicates

3

it is a vertical histogram and the superscript i indicates this vertical

histogram corresponds to the region R(i). Such a vertical histogram

Hi
v is represented as a v dimensional vector in the form of Hi

v ,
[Hi

v(1), · · · ,Hi
v(v)] where Hi

v(j) records the number of edge pixels on

the horizontal line which stays j pixels above the bottom of the image,

i.e. Hi
v(j) = |{pixel(x, j)|pixel(x, j) is an edge pixel in Î; lefti 6 x 6

righti}|. This way of deriving the vertical histogram vector Hi
v is very

similar to the process for deriving the horizontal histogram vector Hh

as examined earlier in step 3.

6. Once the vertical projection histogram Hi
v has been derived, we can

then segment the image region R(i) following a similar routine as em-

ployed in step 4 in the above. That is, we first derive a binary sequence

Bi
v , [Bi

v(1), · · · ,Bi
v(v)] according to Hi

v as follows:

Bi
v(j) ,

1 if Hi
v(j) ≥ τv;

0 otherwise.
(j = 1, · · · , v) (3)

where τv is a pre-selected segmentation threshold.

Our algorithm then detects segments of consecutive 1’s in Bi
v. The

resultant sequence of such segments are denoted as Segi
1, · · · , Segi

mi

assuming there are mi segments of consecutive 1’s detected from Bi
v

in total. For each Segi
j, the i-th segment of consecutive 1’s in Bi

v, we

represent its left and right boundaries as bottomi
j and topi

j respectively.

That is, Segi
j corresponds to the block of consecutive 1’s which starts

at the bottomi
j-th component in Bi

v and ends at the topi
j-th component

in Bi
v. It is easy to see that topi

j−1 < bottomi
j as otherwise the two

segments Segi
j−1 and Segi

j should have been merged together. Similar

4

to the small segment elimination process in step 4, if any resultant

segment’s height is less than 3 pixels apart, i.e. bottomi
j − topi

j−1 < 3,

we will eliminate this segment, as such a segment probably correlates

to an edge or a boundary in the input image rather than a text region

since with this narrow height, texts are unlikely to be eligible.

7. Every pair of the segments Segi and Segi
j (j = 1, · · · ,mi) derived in step

4 and 6 in the above jointly defines a rectangular region Ri
j inside the

original image I, whose left, right, top, bottom boundaries correspond

to the lines x = lefti, x = righti, y = bottomi
j and y = topi

j in I
respectively. That is, Ri

j , {pixel(x, y)|lefti 6 x 6 righti; bottom
i
j 6

y 6 topi
j}. Each such region serves as a candidate text region. For

every Ri
j, we compute a corresponding minimum coverage bounding

box, which is denoted as X i
j . Initially, the boundaries of the bounding

box X i
j are set as the boundaries of the rectangular region Ri

j. We then

optimize positions of these boundaries through a two-stage expansion

and shrinking process. In the first stage, the bounding box will be

minimally expanded so that all the edge pixels which are connected to

at least one edge pixel inside the text region Ri
j will be covered by the

expanded bounding box. And then in the second stage, the bounding

box will be maximally shrunk so that the area of the bounding box is

minimized without excluding any edge pixels originally contained in the

region Ri
j. After this two-stage process searching for optimal boundary

positions for Ri
j, we add the bounding box region X i

j into the result

text region collection {R}. All the text regions so derived constitute

the result text region set R, which are detected from the interior region

5

R of the input image I.

[1] Lienhart, R. and Wernicke, A. (2002). Localizing and segmenting text in images and videos. IEEE Trans-

actions on Circuits and Systems for Video Technology, 12(4), 256–268.

[2] Wu, V., Manmatha, R., and Riseman, E. M. (1999). Textfinder: an automatic system to detect and recognize

text in images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11), 1224–1229.

6

